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The growth of interfaces through columnar media is analyzed using a simple two-dimensional
model in which the pinning force and the diffusivity are modeled by random quenched fields. The
characteristic roughness exponents x and 3 are analytically obtained in agreement with simulations.
It is shown how disorder in the diffusivity, controlled by a parameter a < 1, strongly affects the
scaling of the interface. Disorder-dependent exponents 8 = (3—a)/[2(2—a)] and x = (3—a)/[2(1—

a)] are exactly calculated.
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I. INTRODUCTION

The growth of interfaces through random media with
quenched disorder is a subject of recent interest that has
attracted the attention of much research. The reason is
twofold: on the one hand, there is a considerable disper-
sion of results obtained from experiments, simulations,
and theory [1] and, on the other hand, the problem is rel-
evant in fields with important technical applications [2,3]
such as surface growth and deposition processes, wetting
in porous media, directed polymers in random media,
pinning of the vortex lines in type-II superconductors,
and charge density waves.

The dynamics of interfaces with thermal fluctua-
tions has been described by means of stochastic dif-
ferential equations of Kardar-Parisi-Zhang (KPZ) [4]
and Edwards-Wilkinson (EW) [5] type with a spatio-
temporal noise 7(z,t). Considerable agreement between
theory and simulations of growth models usually has been
obtained in the case of dynamical disorder. A number
of growth models (ballistic deposition, deposition with
diffusion, and the Eden model among others) in which
thermal fluctuations are relevant can be described by the
KPZ (or EW) equation [6].

The situation in the case of quenched disorder is very
different. Quenched disorder usually appears in fluid in-
vasion of porous media [7] or domain-wall motion with
random-field (or random-bond) disorder [8]. The inter-
face is driven through a disordered medium by an ex-
ternal driving force F. There exist similar models with
stochastic equations, the so-called quenched KPZ and
quenched EW equations [8-13], but now the noise is
quenched and dependent on the height of the interface
h(z,t) as n(x, h). The calculation of roughness exponents
in this case is a complicated mathematical problem since
the nonlinearity is included in the disorder. However,
several points concerning the growth of interfaces mod-
eled in this manner have been clarified, mainly by means
of simulations [9-11] and phenomenological arguments
[8,11,12]. The motion of the interface is dominated by
the pinning forces present in the inhomogeneous medium.
These pinning forces are able to slow down the motion
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in large regions. There exists a critical force F, [8-12]
separating two different regimes. Above F,, for F' > F,
the quenched disorder is relevant and the exponents cor-
responding to the critical point can be calculated [8,12].
In the strong pushing limit, where F' > F, the interface
moves faster and behaves as in the dynamical disordered
case 7n(z, h(z,t)) ~ n(z,Ft) [11]. On the contrary, for
F < F, the interface remains pinned by the disorder.
It has been shown [10,13] that at least three different
universality classes can be distinguished in the quenched
KPZ equation, although experiments, simulations, and
theory near this point F' ~ F are not yet in good agree-
ment (see [1] for a recent review).

It is well known that the typical exponents can change
in the KPZ equation with a long-range correlated noise
and nonuniversal correlation-dependent exponents are
found [14]. Also, there is numerical evidence of the great
influence on the roughness of the interfaces by some kinds
of quenched disorder [1,15,16]. In this case, disorder can
affect the concept of universality that one expects to ex-
ist. In general, it is a very interesting problem determin-
ing how disorder can change the universal behavior.

In this paper we deal with a different type of quenched
disorder, quenched columnar disorder, that illustrates
some other possibilities of growth and is relevant in some
porous media [17]. Incompressible flows in porous ma-
terials are usually modeled by classical diffusion of in-
dependent particles in random quenched environments.
In such a situation, long-range correlations could hap-
pen if the flow lines of the invading fluid are correlated
over large distances, which occurs in the study the mo-
tion of a fluid in a stratified porous media [18]. Then,
the quenched disorder is taken constant along vertical
channels n(z) (i.e., columnar disorder). In the problem
of two-phase flow of viscous fluids in porous media, the
effect of columnar disorder has been also analyzed [19].
Quenched columnar disorder also plays an important role
in the roughening of directed polymers where columnar
defects may compete against point defects [20].

The differences between columnar n(z) and uniform
quenched 7(z,y) disorder are considerable. As we will
show, the growth is very dependent on each particular
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realization of disorder and as a consequence several scal-
ing laws that hold in the uniform case here are not valid.
Despite that the disorder is in this case stronger than in
the uniform case, pinned states do not appear. Pinning
is an effect due to the nonlinearity of the noise [8,12].
As expected, roughness in columnar disorder is greater
than in uniform disorder. As concerns the growth of in-
terfaces we can say that the dynamical disorder n(z,t)
is weak since roughness is small as a result of temporal
averaging of forces, the columnar disorder 7(z) is strong
because forces remain frozen in time, and the uniform
quenched disorder n(z, h(z,t)) is an intermediate case.

II. COLUMNAR QUENCHED MODEL
AND ANALYTICAL RESULTS

In this paper we shall consider only a linear growth
model since it allows the possibility of analytical results.
We introduce a model with columnar quenched disorder
both in the force term and in the diffusivity.

Disorder in the diffusion coefficient is taken as in the
theory of linear transport through random media. When
both disorders are uncorrelated the usual analysis can
be exactly carried out. In the strong disorder case, the
anomalous behavior found in the transport theory here
leads to an anomalous roughness exponent. This rough-
ness increases indefinitely as disorder becomes stronger.
Simulations are in agreement with this analysis. Hence,
with this simple example, we illustrate a mechanism by
which a quenched disorder with a well defined correla-
tion length induces anomalous roughness. Then, instead
of having a universal behavior, the exponents are depen-
dent on disorder.

Only two effects are taken into account: the pinning
force, which is constant along vertical channels, and the
interaction between neighboring channels, which is taken
in a diffusive manner. The continuous version of this
model can be written in terms of a stochastic differential
equation for the height h(z,t) of the interface at position
z and time ¢ as

7] 7] 0

2 b t) = 2 D(@) o hlet) + F4n(@), (1)
where D(z) > 0 is the random diffusion coeflicient re-
lated to the interchange between vertical channels and
the driving force F. n(z) represents the random pin-
ning forces in the random medium and is taken as a
Gaussian noise with mean (n(z)) = 0 and correlation
(n(z)n(z')) = 66(z — z'). D(z) is also a white noise, but
due to the constraint D(x) > 0 it cannot be Gaussian.

Since (1) can be seen as a model of diffusing particles
with sources and absorbers we shall use for D(z) the
same stochastic description as in the theory of transport
through random fields. Hence the discrete version of (1)
is a master equation

6h1 t — Dz
OO _ (1 By Di(mr — hat) + m/Va+ F, ()
where Ef: is a shift operator, Ef fi = fix1, a is

the lattice spacing, 7; is a Gaussian uncorrelated noise
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(min;) = 66;;, and D; is another uncorrelated noise
distributed according to a probability density P(D).
Usually, this probability density is modeled by taking
P(D) = NoD™*f.(D/Dmax), where N, is the normal-
ization constant and f. a cutoff function basically speci-
fied by the fixed Dpax. As it has been shown [21-23], this
distribution for disorder covers all situations of physical
interest. Briefly, when P(D) becomes zero as D — 0 dis-
order is weak because the horizontal correlation length
is diffusive. On the contrary, if 0 < a < 1, disorder is
strong and an anomalous behavior in the diffusion length
appears.

In the following we use a reference frame with uniform
velocity F' along the vertical coordinate, which is equiv-
alent to considering (1) or (2) with F' = 0. This equiv-
alence comes from the invariance of a columnar field to
translations along the vertical coordinate.

As usual, let us define the height and width of the
interface averaged over pieces of length [ as

En(h t) = {h(z,t) }i,

on(l,t) = {(h(z,t) = {h(z,1)})*}s, 3)

where {A}; = (1/1) f:"’l Adz'. Obviously these functions
are dependent on the realization of disorder. Disorder-
independent quantities are obtained when averaging over
realizations of disorder

h(l,t) = ({h(z,t)}1),

o*(l,t) = ({(h(z,t) — {h(z,1)})*},)- (4)

The usual scaling laws postulate a saturation time
ts(l) ~ l*, where z is called the dynamical exponent.
For times t < t, the width scales with time as

o(l,t) ~ 1P

and after time t,(l) the width does not depend on time
but on the length ! of the interface. This dependence on
l of the interfacial width is used to define the roughness
exponent x

o(l,t > t)) ~ IX,

where x = 23. In the problem of growing interfaces with
time-dependent noise (thermal fluctuations) the scaling
with size ! in the saturation regime can be either a piece
of interface of length ! or the overall length L. We shall
show that this equivalence is no longer valid in our case.
First, we analyze the case in which the interactions be-
tween channels (i.e., the diffusivity) are constants. From
(1), in the comoving frame F = 0 with D(z) = D, the
continuous model can be easily solved, obtaining

h(z, t) =/01t /: Gla, t]z, ¢)n(z)de’, )

where
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1oy 1 ex _(x—xl)z
Gl tle, ) = 4n(t — ¢')D p( 4Dt )

is the Green function of the problem without sources and
the initial condition h(z,t = 0) = 0 has been assumed.
Now, from (5), we calculate the width averaged over re-
alizations of disorder

6132 a4 f(z,z)
" 4D (/ (v

UVE PUVE f(z,y)
/ / GE mdy)
with

o 1 d’T1 1 d’Tg
T,y) = d
f(z,9) /—oo -1'1/0 \/1—7'1A VAR

oy (e mm o)

4D(1 — 'T]_) 4D(1 — 7'2)

The height averaged over realizations is also obtained in
a straightforward manner, h(l,t) = 0. At short times,
when [/+/t > 1, the width scales as o2(t) ~ t3/2, which
gives immediately the exponent 3 = 3/4. Since the satu-
ration time goes like ¢, ~ {2, we obtain 02(l) ~ I3 in the
saturation regime and the roughness exponent is x = 3/2.
The temporal dependence of the horizontal characteristic
length is diffusive. :

In a columnar medium with different interplay between
channels depending on the substrate position, the growth
of an interface can be strongly influenced by disorder.
With our model defined in (1) this dependence can be
studied analytically. We can proceed either from the
continuous version (1) or from the discretized one (2).
In order to follow an analysis similar to the constant dif-
fusion case, we first consider the continuous model (1),
taking the solution of h(z,t) in the same manner as in
(1), but now the Green function is disorder dependent.
Taking into account that D(z) and n(x) are uncorrelated,
we obtain from definitions (4) and (5) an expression for
the interface width in terms of Laplace transforms:

1 oo s
:Q/ dm/ dwl/ __dsi
U Jo —oo o (8—s1)81

><<(;"9—-!!1 ("1"7 $1)G31 (:L', :1:1)>

l l oo 8
d.z'/ dy/ dm1/ —~d§1—
0 0 —oo o (8—s1)s1

X(Gs—s, (T, 21)Gs; (Y, T1)), (6)

a?(l,t)

where G,(x) is the Laplace transform of the disorder-
dependent Green function.

A method has been introduced recently in Ref. [24] to
calculate averaged products of n Green functions in the
context of diffusing particles through disordered media.
Following [24], the leading contribution of the averaged
product of two Green functions is
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(Gy(z,y)Go (a',y)) ~ Hs—r(lwe—[a/r(sn”%—m
1

_sl T(s' 1/23!_
xme[/(n = —y|

(7)

I'(s) is a renormalized frequency-dependent diffusion co-
efficient given by the condition

D; —T'(s) _
<1 = 7.6 )Di - r(s)1> =0 ®)

and the function J,(3,5) = (E;f — 1)(1 — E;)Gs(i,j).

This condition is obtained in a self-consistent manner
by assuming an effective medium with memory [24] in the
discret version, Eq. (2), of the model. In the process of re-
summation that leads to Egs. (7) and (8) it is important
to consider the order of limits a — 0 (a being the lattice
spacing) and t — co. We assume a physical system with
small but finite a and consequently we first take the long
time limit £ — oo and then the continuous limit a — 0. In
these conditions (8) leads to a frequency-dependent dif-
fusion coefficient I'(s), which scales as I'(As) ~ A*T'(s),
p being characterized by the disorder [23,24]. Using for
the disorder the distribution P(D) ~ D~%, from (8) and
following [24], we obtain that, for @ < 0, I'(0) is finite
and only a renormalization of the diffusion coefficient
D = T'(0) occurs, so the horizontal correlation length
l.(t) has a diffusive behavior I.(t) ~ 2T'(0)t'/2. In this
case the limits ¢ — 0 and ¢ — co commute and the dis-
order is called weak. The situation is very different for
the strong disorder case 0 < a < 1 because the diffusion
coefficient is zero and a generalized frequency coefficient
I'(s) must be considered. Now taking the limit a — 0
before t — oo, one obtains the static limit in which par-
ticles are at rest. The limit observed in physical systems,
t — oo before a — 0, leads to the frequency-dependent
coefficient I'(s) ~ s* with u = a/(2 — a) [24].

Returning to the calculation of the interface width
o%(l,t), we substitute (7) in (6) and use the scaling

I'(As) ~ A#T'(s), obtaining
9s—(5+n)/2 15t/
Uz(l,s) ~ m /0 ’(/J(w,m)da:
1s(1—n)/2 15(1—1)/2

1
T ls(-m)/2 /0 d”"/o

where the function 9 is given by

oo 1 d81
vy = /_w d‘“/o (1= 51)?s30(1 = 51)0(s1)
x exp{—[(1 —s1)/T(1 — sl)]l/z|w — ]
—[51/T(s)]"?|ly — 21}

Now the saturation time can be defined by the condition
1s(1=1)/2 ~ s~1 50 we find that t,(l) ~ [2—a)/(1-a)
At times t < t, but large enough to prevent tran-

dyy(z, y)) ,
(9)




sients (s~1 > 0, Is1™#)/2 5 o0), we have o2(s) ~
s~(5-20)/(2-2)_ In terms of time o2(t) ~ t(3-)/(2=a)
which implies 8 = #&—) As usual, the roughness ex-
ponent is obtained in the saturation regime when the
horizontal correlation length I.(t) ~ t(:=*)/(2-2) reaches
the size . Hence, for t >> t,, we have o2(l) ~ t,(I)%? ~
13=a)/(1=2) and consequently x = 2((3%’% is the rough-
ness exponent in the strong disorder case. These expo-
nents are our main results; a disorder with finite corre-
lation length, given by the lattice spacing a, leads to a
growth with characteristic exponents depending on the
disorder.

Although the above exponents have been calculated
exactly, we would like to show how they may also be
obtained by a scaling argument. Disorder in the coeffi-
cient D(z) of (1) allows one to define an horizontal char-
acteristic length l.(t) ~ t(1=®)/(2=2) according to the
fact that I'(s) ~ s* is the generalized diffusion coeffi-
cient and ¢ = 2/(2 — ) in our model. On the other
hand, the height dispersion in a set of channels with
random quenched velocity n(z) has already been calcu-
lated in Ref. [25] and is given by (h?)1/2(t) ~ (n(z)?)'/t.
Since n(z) is a Gaussian noise and the number of chan-
nels involved until time t scales as tf(lzT‘:-Y, we have
(n(x)2)1/% ~ t3G=> and consequently the interface width

3—a
scales as o (t) ~ (h?)1/%(t) ~ t?2(3-2) | as obtained in the
previous analysis by more rigorous methods.

III. NUMERICAL RESULTS

We have simulated the discretized version (2) of (1)
for F = 0 and calculated the exponents 8 and x nu-
merically. The numerical integration of (2) was car-
ried out using a lattice spacing @ = 1 and large system
size L = 1000,5000,10000. In order to produce simula-
tions for long times we used time steps At = 0.01 and
At = 0.001. The appropriate At depends on the actual
values of Dy, and the intensity of noise §. We checked
that the numerical results do not change by making runs
for smaller At. The temporal exponent 3 was always
obtained with very good accuracy and short computer
time averaging over 15 realizations of disorder. In Fig. 1
the results from simulations together with the theoretical
value for several degrees of disorder are presented.

The roughness exponent x had to be treated with care
because in the quenched columnar case the growth is very
dependent on the particular realization of disorder. In a
numerical simulation, the measure of the exponent x is
usually a rather time consuming task since an interface
with size L reaches the saturation regime at times that
increase with L as LX/B. There is a long wait for the
saturation of the interface. In order to shorten the com-
puter time, an alternative method is often used that is
expected to lead to the same final result: an average over
all pieces of length | < L is taken in the same realization
and then, the average over realizations is performed. By
following this method we obtained a roughness exponent
x = 0.94 £ 0.03 for constant diffusivity x = 0.96 + 0.05
for @ = —1000 (weak disorder) and x = 0.74 + 0.08
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FIG. 1. Square width versus time in a log-log plot for four
differents degrees of disorder. The slopes of the curves are
1.51 + 0.01 for @ < 0 and 1.57 + 0.03, 1.678 + 0.002, and
1.906 + 0.002 for strong disorder with a equal to 0.1, 0.5,
and 0.9, respectively. The analytical value for 23 is 3/2 for
weak disorder and 1.53, 1.67, 1.91 for strong disorder with
parameter a equal to 0.1, 0.5, and 0.9, respectively.

for a = 0.1 (strong disorder). This technique has been
widely used in the literature [1,6,9,10] to determine the
roughness exponent, but we will show that it is inap-
propriate in our case. In our simulations we observed
that the columnar problem posed in (1) presents strong
dispersion of the saturation time for pieces of interface
with the same length {. This dispersion exists even when
one maintains both fields D(z) and 7n(z) inside a piece
of length ! and changes the fields in the rest of the sub-
strate, reflecting an extreme dependence on boundary
conditions. In a problem of growing interfaces with dis-
order that changes in time [26], the saturation time of
a piece with size ! is a well defined quantity (with small
dispersion between realizations) due to the self-averaging
that is induced by temporal fluctuations. However, in our
model the saturation time of a little piece of interface is
not a self-averaging quantity and the method described
below, which is useful in problems driven by dynamical
noise, gives incorrect results in our case. So, to determine
the correct value of the roughness exponent we simulated
Eq. (2) for substrates with different sizes (L = 100, 250,
350, 500, and 700) and obtained the interface width in the
saturation regime. We averaged over 15 realizations of
disorder with a high cost of computing time (see Fig. 2).
The exponent x = 1.43 + 0.09 was obtained in the con-
stant diffusivity case [D(z) = D] and also for a < 0,
which corresponds to weak disorder. For strong disorder
a = 0.1, the roughness measured was x = 1.58 £ 0.06
and x = 1.76 £ 0.09 for stronger disorder o = 0.2. In
all cases, very good agreement with the predicted value
X = ﬁ was found. Because computing time greatly
increases as disorder becomes stronger, we were not able
to explore greater values of a.

Finally, we have studied a case in which disorders are
correlated i.e., (D(z)n(x)) # 0. From an intuitive point
of view, it would seem that strong correlations between
random pinning force and diffusivity leads to changes in
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FIG. 2. Saturation regime (in the weak disorder case) of
the interface for five systems with different sizes. The value
of the width in the saturation regime is taken to fit the scaling
law o(L) ~ LX. Similar plots are obtained for the saturation
of the width in the cases of strong disorder.

the roughness exponents. However, from analytical con-
siderations one can see that corrections due to correla-
tions do not appear in the exponents of the leading term,
but they change the coefficients of (7). Of course, this
happens whenever the resummed expansion (7) is conver-
gent. In our simulations we have introduced a very strong
correlation as follows. Let us define the median D,,, of the
distribution function of D as fOD'" P(D)dD = 1/2. Given
a position z, we take D(z) to be distributed according
to P(D) ~ D~“. Then, the random field n(z) is chosen
n(z) > 0 if D(z) > D,, and n(z) < 0 if D(z) < D,,.
In this way the Gaussian property of n(z) is maintained
and a strong constraint is included. In agreement with
analytical considerations, the exponents obtained in our
simulations do not change significantly in any case. Note
that the correlation was strong but short ranged (disor-
ders are correlated at position x).
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IV. CONCLUSION

In summary, we have studied the effect of quenched
columnar disorder in growing interfaces. We have shown
how disorder in the diffusivity changes the characteristic
exponents of growing. In the weak disorder case or when
the diffusivity is constant, the trivial exponents 8 = 3/4
and x = 3/2 are found. However, in the strong dis-
order case, these exponents depend on a parameter o
that characterizes the intensity of disorder. In the for-
mer case, by using standard methods in transport the-

ory we also obtained exactly the exponents 8 = 2(32—__‘;—)

and x = % in agreement with simulations. The ex-
ponents are unchanged when a short-range correlation
is included between the columnar pinning force and the
random diffusivity. Our results indicate an interesting
case of growth in which a quenched disorder with short
correlation length leads to anomalous exponents 3 and .
A different model of growth with columnar disorder was
recently considered in Ref. [19]. The authors numerically
studied an approach to explain the experiments on ki-
netic roughening by considering a stochastic differential
equation with multiplicative noise. The effect of multi-
plicative noise can be thought of as similar to a random
diffusivity. However, both models are rather differents
due to the high nonlinearity of the equation studied in
Ref. [19] (the term [1 + (Vh)?]*/2 was included in its full
form), contrary to the linear character of our model.

The model discussed in this paper is used in fluid flow
through some random media when correlations over a
large distance appear. Also, columnar disorder is very
important in the roughening of directed polymers in ran-
dom media where its effect at zero temperature is to
break down the universality property expected to exist
and a strong sample to sample dispersion of the globally
optimal path is found [20].
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